Imaging auditory representations of song and syllables in populations of sensorimotor neurons essential to vocal communication.
نویسندگان
چکیده
Vocal communication depends on the coordinated activity of sensorimotor neurons important to vocal perception and production. How vocalizations are represented by spatiotemporal activity patterns in these neuronal populations remains poorly understood. Here we combined intracellular recordings and two-photon calcium imaging in anesthetized adult zebra finches (Taeniopygia guttata) to examine how learned birdsong and its component syllables are represented in identified projection neurons (PNs) within HVC, a sensorimotor region important for song perception and production. These experiments show that neighboring HVC PNs can respond at markedly different times to song playback and that different syllables activate spatially intermingled PNs within a local (~100 μm) region of HVC. Moreover, noise correlations were stronger between PNs that responded most strongly to the same syllable and were spatially graded within and between classes of PNs. These findings support a model in which syllabic and temporal features of song are represented by spatially intermingled PNs functionally organized into cell- and syllable-type networks within local spatial scales in HVC.
منابع مشابه
Song replay during sleep and computational rules for sensorimotor vocal learning.
Songbirds learn a correspondence between vocal-motor output and auditory feedback during development. For neurons in a motor cortex analog of adult zebra finches, we show that the timing and structure of activity elicited by the playback of song during sleep matches activity during daytime singing. The motor activity leads syllables, and the matching sensory response depends on a sequence of ty...
متن کاملSynaptic interactions underlying song-selectivity in the avian nucleus HVC revealed by dual intracellular recordings.
Stimulus-dependent synaptic interactions underlying selective sensory representations in neural circuits specialized for sensory processing and sensorimotor integration remain poorly understood. The songbird telencephalic nucleus HVC is a sensorimotor area essential to learned vocal control with one projection neuron (PN) type (HVC(RA)) innervating a song premotor pathway, another PN (HVC(X)) i...
متن کاملIntrinsic and extrinsic contributions to auditory selectivity in a song nucleus critical for vocal plasticity.
The development, maintenance, and perception of learned vocalizations in songbirds are likely to require auditory neurons that respond selectively to song. Neurons with song-selective responses have been described in several brain nuclei critical to singing, but the mechanisms by which such response properties arise, are modified, and propagate are poorly understood. The lateral magnocellular n...
متن کاملDeafening Drives Cell-Type-Specific Changes to Dendritic Spines in a Sensorimotor Nucleus Important to Learned Vocalizations
Hearing loss prevents vocal learning and causes learned vocalizations to deteriorate, but how vocalization-related auditory feedback acts on neural circuits that control vocalization remains poorly understood. We deafened adult zebra finches, which rely on auditory feedback to maintain their learned songs, to test the hypothesis that deafening modifies synapses on neurons in a sensorimotor nucl...
متن کاملAn associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence.
Understanding the neural mechanisms underlying serially ordered behavior is a fundamental problem in motor learning. We present a computational model of sensorimotor learning in songbirds that is constrained by the known functional anatomy of the song circuit. The model subsumes our companion model for learning individual song "syllables" and relies on the same underlying assumptions. The exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 14 شماره
صفحات -
تاریخ انتشار 2015